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Findings and points of interest of the Nordic 
Timber Bridge Projects 
 
1. Introduction 
 
During the years of 1994 – 1996, 1997 – 1999 and 1999 –2001 three Nordic Timber Bridge 
Projects were carried out. The partners involved came from Denmark, Finland, Norway and 
Sweden. The projects were part of a large wood project called Nordic Wood that was 
coordinated and financed by the Nordic Industrial Fund. The total budget of the three Timber 
Bridge Projects was about 2,7 M€, from which the share of the Nordic Industrial Fund was 30 
%. Additional governmental money, i.e. 20 %, came from national research funds. The 
remaining half came from national road and bridge authorities and private wood industry 
enterprises. The common interest and main object of the projects was to increase the 
competitiveness of timber bridges compared to other materials like steel and concrete and to 
develop and activate the Nordic wood industry and timber bridge construction. 
 
For coordination, a steering committee of 6 – 8 persons was established for each project. 
These persons represented the main industrial financers and national road administrations. 
Each participant country was equally represented. Additionally, a representative of the Nordic 
Wood, an observer from Estonia and the leaders of the four project groups attended the 
meetings. The project groups, which were responsible for the research and practical work, 
were 

 Dansk Teknologisk Institut, Denmark 
 Laboratory of Bridge Engineering of Helsinki University of Technology, Finland 
 Norsk Treteknisk Institutt, Norway and 
 Trätek, Sweden. 
 
The results of the projects were reported in 33 printed reports and several national and three 
international conferences. Additionally two booklets presenting Nordic timber bridges built 
during the projects were published. Some of the results had contribution to the ongoing work 
with Eurocodes. The main result, however, was that many new timber bridges were built and 
that a considerably increased interest in timber bridges in the Nordic countries was created. 
As a consequence, an IABSE conference on innovated wooden structures and bridges with 
100 papers and 280 participants was held in August 2001 in Lahti, Finland. 
 
The purpose of this paper is to present the results and achievements of the three projects 
mentioned above. 
 
2. Development of wood-concrete composite bridges 
 
One of the main interests of the current research was to investigate the possibility to use wood 
in road bridges. Although timber bridges were always built especially in Finland, it was felt that 
new solutions were needed. Such solution was found in wood-concrete composite 
construction that became quite popular in Finland. So far this kind of bridges have not been 
built in the other Nordic countries.  
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The three major benefits achieved by using wooden beams and a concrete deck as a 
composite structure in road bridges are 

- the strength and stiffness properties of the two materials can be utilized better, 
- the concrete deck makes it possible to use similar wearing surfaces as in bridges made 

from other materials and  
- the durability of the timber beams is increased when they are protected against harsh 

weather conditions under the concrete deck. 
 
The essential parts in a composite structure are the connectors placed between the two 
materials to make them to act together. To be effective and competitive, the connectors must 
be stiff, durable and easy to manufacture. After analyzing and testing several alternatives it 
was found out that simple and effective shear connectors can be constructed by using steel 
bars embedded in wood by glueing them into inclined predrilled holes (Fig. 1).  
 
 
 
 
 
 
 
Fig. 1.  Principle of joining a timber beam and a concrete deck by using glued-in steel bars. 
 
After the decision to use wood-concrete composite concrete in the 42-meter span 
Vihantasalmi Bridge (Fig. 15) was made, several experimental tests were performed to ensure 
the reliability of the shear joints under service and ultimate loading [13]. To study the effect of 
different parameters on stiffness, strength and durability of the joint, four specimens were 
prepared and tested in the laboratory by using a one-splice shear test as shown in Fig. 2 and 
Fig. 3, respectively [5]. 
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Fig. 2. Four shear specimens tested in the labo-
ratory.  

 
Fig. 3. One-splice shear test arrangement in the 
laboratory. 
 

Two types of adhesives, polyurethane (Specimens 1, 2 and 4) and epoxy (Specimen 3) were 
used for glueing. Two specimens had a notch on the upper surface of the wooden web but 
different reinforcement (Specimens 3 and 4). Each specimen was subjected to a pulsating 
load with an amplitude of 160 kN for more than one million load cycles.  
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The behaviour of the connections during the fatigue tests was determined by measuring the 
relative displacement, i.e. the slip between wood and concrete, by using inductive transducers 
installed on both sides of each specimen. The results of the tests are shown in Fig. 4. The first 
curve on the left in each diagram represents the static force-slip response of the joint. The 
other curves show the static response during and after the fatigue tests, respectively. 
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Fig. 4. Effect of fatigue loading on the slip of the shear joints tested. N is the maximum number of load 
cycles [5].  
 
Damage caused by fatigue could not be observed during the tests. Some softening of the 
shear connections, however, is evident as can be seen from the decreasing slope of the 
curves when the number of load cycles increases. The stiffness obtained when using epoxy 
glue (Specimen 2) was considerably higher than that obtained with polyurethane glue 
(Specimen 1). A notch (Specimens 3 and 4) increases the stiffness and decreases the slip, as 
could be expected. The inclined reinforcing bars for compression force in Specimen 4 kept the 
permanent slip low. In this specimen nearly linear and stabile response was obtained even 
after 1,7 million pulsating load cycles.  
 
After the fatigue tests each specimen was loaded up to failure by using a monotonically 
increasing static load. The ultimate load varied between 588 kN and 921 kN. Notched 
specimens had considerably (approximately 35 %) higher shear capacity than the un-notched 
ones [13]. 
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On the basis of the shear tests it is evident that by using reinforcing bars and notches it is 
possible to achieve a connection that is stiff, behaves nearly linearly, maintains its stiffness 
under repetitive loading at the service state level, and has high ultimate shear capacity. That 
is why the connection  
of type 4 and epoxy glue was chosen for the composite deck structure of the Vihantasalmi 
Bridge (Fig. 5). 

 
Fig. 5. Shear connectors of the main beams of the Vihantasalmi Bridge. 
 
Additionally, environmental effect on the connections was tested by using two test beams. In 
the first phase, the beams were subjected to more than one million load cycles. After that the 
beams were stored two years outside uncovered and exposed to variable weather conditions 
and then tested again. The purpose was to find out, whether the storage time had reduced the 
stiffness or fatigue strength of the connections [3].  
 
Comparison of the slip measurement results shows that the two years storage time has no 
influence. It means that the connections developed are not sensitive to environmental loading.  
 
The subproject on wood-concrete composite bridges played a vital role in the development of 
connections between wood and concrete. As a result, a variety of new deck types were 
introduced. Moreover, a timber road bridge with 42 m span and thereby wood-concrete 
composite structures became a reality in bridge construction in Finland. 
 
3. Joints in arch and truss bridges 
 
3.1 Types of joints developed 
 
During the Nordic Timber Bridge Projects different kind of joints for arch and truss bridges 
were developed and partly also tested.  The main concern was with the joints of large 
members on one hand and some details on the other. The joints of large members are 
needed for connecting two arch segments and at the arch footing. Smaller joints appear at 
hanger connections and in trusses. 
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For connecting large members in arches and trusses, a BSB-type connector (Blumer System 
Binder) was found to be most suitable, but also other types of connectors were developed. 
The difference with the ordinary BSB connectors is that bigger bolts and holes, 12 mm and 
12,5 mm, respectively, and normally 8 mm thick steel plates were used. 
As an example, a 50 m span pedestrian bridge designed is shown in Fig. 6. The arch itself 
consists of four 215 x 1100 mm2 curved gluelam members arranged in pairs so that there is a 
gap for hangers between two members. With this arrangement the hanger connection 
becomes rather simple, as shown in Fig. 7. 
 

Fig. 6. Elevation and cross-section of a 50 m span pedestrian bridge designed. Dimensions in mm.  
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Fig. 7. Hanger connection between two adjacent gluelam arches. Dimensions in mm [12].  
 
Another type of a big arch-hanger connection is shown in Fig. 8. It is based on the use of 
dowels and parallel slotted-in steel plates. A similar connection was found to be useful in 
trusses when joining two diagonals with a chord (Fig. 8).  
 

 

Fig. 8. Typical joint of a hanger in an arch  and two diagonals in a truss, respectively [14].  
 
3.2 Fatigue tests 
 
Otherwise than buildings, bridges are subjected to variable stresses due to traffic. Although 
fatigue resistance of wood material generally is high, mechanical fasteners may cause local 
damage and lead to fatigue failure of the structure. Due to the limited information on fatigue of 
joints with slotted-in steel gusset plates combined with steel dowels, a series of tests was 
carried out to verify the present knowledge and code requirements. Therefore, 25 specimens 
shown in Fig. 9 were prepared to make altogether 3 static tests and 42 fatigue tests in a rig. 
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Fig. 9 Perspective view of a specimen with two similar ends and geometric data of the gusset plates, 
dowels and wooden parts, respectively. Dimensions in mm [6].  
 

The conclusions drawn from these tests state that 

- use of maximum stress as a fatigue strength parameter seems to be more reasonable 
than using the stress range, 

- fatigue strength is dependent on the loading ratio, which is the ratio between the 
minimum and maximum stress and 

- fatigue strength can be considered to be a linear decaying function of the logarithm of 
the number of cycles in accordance with Wöhler’s classical work [6].  

 
4. Lateral prestressing of timber decks 
 
According to Professor Ernst Gehri, the origin of lateral prestressing of timber decks, or 
stress-lamination, as it is more commonly called, goes back to the 1950’s, when in house 
construction the stress-laminated floors were first used. In Canada first use of bridge decks 
goes back to the 1970’s [4]. In 1984 in the 12th Congress of IABSE in Vancouver, a poster on 
this topic was presented by Bachelor, van Dalen and Taylor. Inspired by this new technology, 
a diploma thesis study was carried out in 1986 at Helsinki University of Technology under the 
guidance of the first author. Its promising results were then presented to bridge authorities in 
order to implement such decks to timber bridge construction, but it turned out to be ten years 
too early. Today it is common practice in the Nordic countries to construct timber bridge decks 
by using lateral prestressing.  
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There are two important issues connected to laterally prestressed bridge decks of timber: 
time- dependent loss of prestressing force and friction between laminations. In order to tackle 
the former one, an attempt was made to find out new materials to be used in tendon design. In 
that sense the possibility to use synthetic fibre tendons was studied in one of the sub-projects 
in Phase 3 of the Nordic Timber Bridge Projects. 
 
In Table 1, characteristic values of some synthetic tendon materials are shown. As a 
comparison, a Dywidag steel bar is also incorporated. The effect and importance of stiffness 
ratio E/σadm, i.e. the values in the last column, can clearly be seen in Fig. 10. Here tendons of 
different materials are supposed to be stressed to the maximum long-term stress level σadm, 
which corresponds to the desired compression stress of wood. After prestressing the time-
related deformations of the wooden deck are developed and cause the shortening of tendons. 
According to Hooke’s law, shortening means loss in the prestressing force. When a constant 
strain development ∆ε is assumed, the remaining force in a steel tendon is only 66 % of the 
original one, whereas in synthetic tendons 87 – 91 % still remains (Fig. 10). This means 
savings in the number of restressing phases and consequently in costs, too. 
 
Table 1. Characteristic values of some synthetic tendon materials compared to that of a steel 
tendon [9].  
 

Tendon 
material 

E 
[N/mm2] 

σu 
[N/mm2] 

σadm 
[N/mm2] 

E/σadm 

E-glass-fibre 40000 1200 360 111 
PAN carbon fibre 150000 2500 1650 91 
Twaron aramid fibre 62500 1500 950 66 
Dywidag 15 F 0105 bar steel 210000 1100 880 239 

 
 

 
Fig. 10. Effect of stiffness ratio of tendons with constant strain [9]. 

 
Small-scale laboratory tests with 12 mm diameter glass-fibre rods simulating a tendon were 
also carried out. Anchoring by glueing was of special interest, but some material 
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characteristics were studied as well. The results show that the values given in Table 1 are 
realistic. As expected, such tendons do not yield and rupture occurs suddenly and completely 
without any plastic deformation. From the viewpoint of stress-lamination this is not a problem, 
because the tendons reach their maximum load only when being prestressed. Anchoring by 
glueing, however, is problematic, because the outermost surface of a tendon tends to tear off 
during stressing, and as a result the full tendon capacity cannot be utilized. Solutions should 
be found for the anchoring of glass-fibre tendons before applying such tendons to prestressing 
of wooden bridge decks. Another obstacle is the high price. 
 
5. Follow-up and monitoring of some bridges 
 
The main purpose of the follow-up and monitoring of timber bridges is to gain knowledge of 
the behaviour of the bridge under service. The static or dynamic behaviour and the 
environmental influence on the properties of material and structures are the main parameters 
that can be followed either by field tests or continuous monitoring [2].  
 
The static behaviour of a bridge can be most reliably studied by applying load tests. This is 
because the magnitude of mechanical loads and their positions are known and the 
corresponding response can be measured. By applying similar load test again after some year 
period, the effect of time, ageing and long-term loading on the static behaviour can be studied. 
This kind of static follow-up tests were carried out in 1995 and 1998 for the Uusisalmi Bridge, 
that is a multigirder wood-concrete composite bridge completed in May 1995 (Fig. 11) [7, 10].  

 

 
Fig. 11. Static load test on the Uusisalmi Bridge. 
 
The results of the measurements proved the capability of the composite bridge. It behaved 
statically as expected and no special differences were found when comparing the test results 
of 1995 and 1998. In 1998 also dynamic load tests were carried out by driving a fully loaded 
truck over the bridge using different speeds.  
 
Five bridges altogether were monitored during the period 1998 – 2002. The Lusbäcken Bridge 
in Borlänge, Sweden, is a two-lane 20,5 m span bridge with a laterally prestressed glulam box 
beam [1]. The monitored parameters were temperature and humidity of wood and ambient air, 
force in prestressing tendons and support displacement, respectively.   
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Other bridges monitored are the pedestrian bridge in Årjäng, Sweden, and three road bridges, 
i.e. the Daleråsen (Fig. 19) and the Evenstad Bridge in Norway and the Vihantasalmi Bridge 
(Fig. 15) in Finland [3].  All these bridges were instrumented with measuring devices allowing 
continuous measuring. An example of the temperature measurement of the Vihantasalmi 
Bridge is seen in Fig. 12. 
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Fig 12. Ambient air temperature (orange) and wood temperature (red) variations in spring 2002 on the 
Vihantasalmi Bridge [11]. 
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6. Examples of Nordic timber bridges 
 
As a conclusion, examples of Nordic timber bridges constructed during or just after 
completition of the three projects described above are presented here. Due to the limited 
space, only a few representatives could be included. These examples, however, show that 
wood as a material gives excellent possibilities for engineers to construct innovative, 
technically reliable and aesthetically pleasing structures for the need and pleasure of people 
and society [8].  
 

 
 
Fig. 13. Byholmen Footbridge, Dragsfjärd, Finland. Span 23 m, width 4 m. Completed 1997. 

 
Fig. 14. Poukkasilta Ridebridge, Ypäjä, Finland. Span 32 m, width 3,5 m. Completed 2001. 
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Fig. 15. Vihantasalmi Bridge, Mäntyharju, Finland. Spans 21+3x42+21=168 m, width 11+3=14 m. 
Completed in November 1999. 

 
Fig. 16. Munkedal Footbridge, Munkedal, Sweden. Span 60 m, width 3,5 m. Completed 1999. 
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Fig. 17. Okb Footbridge, Söderhan, Sweden. Arch span 19 m, width 4 m. Completed 1998. 

 
Fig. 18. Svanstein Footbridge, Svanstein, Sweden. Spans 6+12+6=24 m, width 3 m. Completed 1995. 

 
Fig. 19. Daleråsen Bridge, Mjøndalen, Norway. Spans 32,6 m and 27,4 m, width 5 m. Completed 2001. 
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Fig. 20. Leonardo da Vinci Bridge, Norway. Spans 45 – 55 m. Completed in Oktober 2001. 

 
Fig. 21. Tynset Bridge,Tynset, Norway. Spans 2x27+70=124 m, width 7+3=10 m. Completed 2001. 
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Fig. 22. Merirahu Bridge, Tallinn, Estonia. Span 24 m, width 3 – 5,5 m. Completed 2000. 
 
 
References 
 
[1] Daerga, P-A. & Fjellström, P-A., Field Measurements of the Lusbäcken Timber Bridge. 

Nordic Wood, Nordic Timber Bridge Project, Phase 2. Stockholm1999. 22 p. 
 
[2] Daerga, P-A. & Fjellström, P-A.,  Monitoring of Timber Bridges. Nordic Wood, Nordic 

Timber Bridge Project, Phase 2. Stockholm 1999. 20 p. 
 
[3] Fjellström, P-A., Tengs, A., Aasheim, E.,  Salokangas, L. & Jutila, A., Monitoring of four 

new Timber Bridges. Nordic Wood, Nordic Timber Bridge Project, Phase 3. ISBN 82-
7120-036-4. 40 p. 

 
[4] Gehri, E., Timber Bridges and Research in Switzerland.  Nordic Wood, Nordic Timber 

Bridge Symposium, Phase 1. Helsinki University of Technology, Laboratory of Bridge 
Engineering, Espoo. 1-3 Sept. 1996. 12 p. 

 
[5] Jutila, A. & Salokangas, L., Research on and Development of Wooden Bridges in 

Finland. Structural Engineering International (SEI) Vol 10, No. 3, 2000. P. 182 - 185. 
 
[6] Malo, K., Fatigue Tests of Dowel Joints in Timber Structures, Part II. Nordic Wood, 

Nordic Timber Bridge Project, Phase 3. ISBN 82-7120-035-6. 24 p. 
 
[7] Mäkipuro, R., Tommola, J., Salokangas, L. & Jutila, A., Wood-Concrete Composite Bridges. 

Nordic Wood, Nordic Timber Bridge Project, Phase 1. Stockholm 1996. 71 p. 
 
[8] Nordic Timber Bridges. A presentation of timber bridges from Finland, Sweden, 

Norway and Estonia. Nordic Industrial Fund. Nordic Timber Council. Nordic Timber 
Bridge Project, Phase 3. 62 p. 

 
[9] Pousette, A., Jacobsson, P., Gustafsson, M., Horttanainen, J. & Dahl, K., Stress 

Laminated Bridge Decks, Part II. Nordic Wood, Nordic Timber Bridge Project, Phase 3. 
ISBN 82-7120-034-8. 26 p. 

 
[10] Salokangas, L. & Jutila, A., Follow-up Tests of the Uusisalmi Bridge. Nordic Wood, 

Nordic Timber Bridge Project, Phase 2. Stockholm 1999. 18 p. 
 
[11] Salokangas, L. & Jutila, A., Vihantasalmen sillan seurantatutkimus (Follow-up report of 

the Vihantasalmi Bridge). TKK-SRT-32. Tampere 2003. 40 p. (in Finnish).     
 
[12] Savolainen, A., Rautakorpi, H. & Jutila, A., Arch Bridges for Pedestrian Traffic.  Nordic 

Wood, Nordic Timber Bridge Project, Phase 2. Stockholm 1999. 14 p. 



Findings and points of interest of the Nordic Timber Bridge Projects 
 

 

9. Internationales Holzbau-Forum 2003 

18 

 
[13] Tommola, J., Salokangas, L. & Jutila, A., Tests on Shear Connectors. Nordic 

Wood, Nordic Timber Bridge Project, Phase 2. Stockholm 1999. 19 p. 
 
[14] Torkkeli, M., Heiskanen, M., Stensby, T., Gustafsson, M., Alajoki, V., Rautakorpi, H. & 

Jutila, A., Joints, Connections and Substructures for Timber Bridges.  Nordic Wood, 
Nordic Timber Bridge Project, Phase 3. 43 p. 

 


